Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2320, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282035

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. ASIC gating is modulated by divalent cations as well as small molecules; however, the molecular determinants of gating modulation by divalent cations are not well understood. Previously, we identified two small molecules that bind to ASIC1a at a novel site in the acidic pocket and modulate ASIC1 gating in a manner broadly resembling divalent cations, raising the possibility that these small molecules may help to illuminate the molecular determinants of gating modulation by divalent cations. Here, we examined how these two groups of modulators might interact as well as mutational effects on ASIC1a gating and its modulation by divalent cations. Our results indicate that binding of divalent cations to an acidic pocket site plays a key role in gating modulation of the channel.


Assuntos
Canais Iônicos Sensíveis a Ácido , Prótons , Cátions Bivalentes/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Mutação
2.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961554

RESUMO

Classical psychedelic drugs are thought to increase excitability of pyramidal cells in prefrontal cortex via activation of serotonin 2A receptors (5-HT2ARs). Here, we instead find that multiple classes of psychedelics dose-dependently suppress intrinsic excitability of pyramidal neurons, and that extracellular delivery of psychedelics decreases excitability significantly more than intracellular delivery. A previously unknown mechanism underlies this psychedelic drug action: enhancement of ubiquitously expressed potassium "M-current" channels that is independent of 5-HT2R activation. Using machine-learning-based data assimilation models, we show that M-current activation interacts with previously described mechanisms to dramatically reduce intrinsic excitability and shorten working memory timespan. Thus, psychedelic drugs suppress intrinsic excitability by modulating ion channels that are expressed throughout the brain, potentially triggering homeostatic adjustments that can contribute to widespread therapeutic benefits.

3.
ACS Pharmacol Transl Sci ; 6(9): 1275-1287, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705593

RESUMO

Hematopoietic cell transplantation (HCT) is a proven and potentially curable therapy for hematological malignancies and inherited hematological disease. The main risk of HCT is the development of graft versus host disease (GVHD) acquired in up to 50% of patients. Upregulation of soluble ST2 (sST2) is a key clinical biomarker for GVHD prognosis and was shown to be a potential therapeutic target for GVHD. Agents targeting sST2 to reduce the sST2 level after HCT have the potential to mitigate GVHD progression. Here, we report 32 (or XY52) as the lead ST2 inhibitor from our optimization campaign. XY52 had improved inhibitory activity and metabolic stability in vitro and in vivo. XY52 suppressed proinflammatory T-cell proliferation while increasing regulatory T cells in vitro. In a clinically relevant GVHD model, a 21-day prophylactic regimen of XY52 reduced plasma sST2 and IFN-γ levels and GVHD score and extended survival in mice. XY52 represented a significant improvement over our previous compound, iST2-1, and further optimization of XY52 is warranted. The small-molecule ST2 inhibitors can potentially be used as a biomarker-guided therapy for mitigating GVHD in future clinical applications.

4.
Pharmaceuticals (Basel) ; 16(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242488

RESUMO

Treatment options are lacking to prevent photoreceptor death and subsequent vision loss. Previously, we demonstrated that reprogramming metabolism via the pharmacologic activation of PKM2 is a novel photoreceptor neuroprotective strategy. However, the features of the tool compound used in those studies, ML-265, preclude its advancement as an intraocular, clinical candidate. This study sought to develop the next generation of small-molecule PKM2 activators, aimed specifically for delivery into the eye. Compounds were developed that replaced the thienopyrrolopyridazinone core of ML-265 and modified the aniline and methyl sulfoxide functional groups. Compound 2 demonstrated that structural changes to the ML-265 scaffold are tolerated from a potency and efficacy standpoint, allow for a similar binding mode to the target, and circumvent apoptosis in models of outer retinal stress. To overcome the low solubility and problematic functional groups of ML-265, compound 2's efficacious and versatile core structure for the incorporation of diverse functional groups was then utilized to develop novel PKM2 activators with improved solubility, lack of structural alerts, and retained potency. No other molecules are in the pharmaceutical pipeline for the metabolic reprogramming of photoreceptors. Thus, this study is the first to cultivate the next generation of novel, structurally diverse, small-molecule PKM2 activators for delivery into the eye.

5.
Glob Ecol Conserv ; 37: 1-15, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36117514

RESUMO

Beaver are recolonizing previously occupied regions, expanding into new territories, and increasingly being introduced and protected for stream conservation and restoration across numerous biomes. However, beaver dam effects on the physical, chemical, and biological characteristics of streams may vary within and among biomes. A comprehensive review of these impacts is lacking. The goals of this review were to: 1) summarize the distribution of studies by biome on beaver dam effects related to channel morphology, hydrology, water quality, and aquatic biota, as well as on beaver habitat selection, 2) summarize the extent to which beaver dam impacts have been consistent within and among biomes, and 3) share testable hypotheses regarding beaver impacts within understudied biomes. We quantify the directionality of beaver dam impacts from 267 peer-reviewed studies. Results show that the majority of studies have been completed within temperate forest environments and that many biomes are understudied. Across biomes, beaver preferred sites for dam development characterized by relatively low gradients and unconfined reaches with small drainage areas. Overall, parameters related to stream morphology and hydrology showed relatively consistent responses to beaver dams within and among biomes, yet water quality and biotic responses were variable among biomes. Responses also varied by parameter within water quality and biotic impact categories. The findings of this study can be useful for stream conservation and restoration efforts that introduce or protect beaver. Additional studies are needed within arid and cold biomes historically occupied by beaver and in novel biomes where beaver populations are currently expanding.

6.
Bioorg Med Chem ; 71: 116942, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930851

RESUMO

An elevated plasma level of soluble ST2 (sST2) is a risk biomarker for graft-versus-host disease (GVHD) and death in patients receiving hematopoietic cell transplantation (HCT). sST2 functions as a trap for IL-33 and amplifies the pro-inflammatory type 1 and 17 response while suppressing the tolerogenic type 2 and regulatory T cells activation during GVHD development. We previously identified small-molecule ST2 inhibitors particularly iST2-1 that reduces plasma sST2 levels and improved survival in two animal models. Here, we reported the structure-activity relationship of the furanylmethylpyrrolidine-based ST2 inhibitors based on iST2-1. Based on the biochemical AlphaLISA assay, we improved the activity of iST2-1 by 6-fold (∼6 µM in IC50 values) in the inhibition of ST2/IL-33 and confirmed the activities of the compounds in a cellular reporter assay. To determine the inhibition of the alloreactivity in vitro, we used the mixed lymphocyte reaction assay to demonstrate that our ST2 inhibitors decreased CD4+ and CD8+ T cells proliferation and increased Treg population. The data presented in this work are critical to the development of ST2 inhibitors in future.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Linfócitos T CD8-Positivos/metabolismo , Furanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Pirrolidinas/farmacologia , Relação Estrutura-Atividade
7.
Commun Biol ; 4(1): 174, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564124

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels critical for neuronal functions. Studies of ASIC1, a major ASIC isoform and proton sensor, have identified acidic pocket, an extracellular region enriched in acidic residues, as a key participant in channel gating. While binding to this region by the venom peptide psalmotoxin modulates channel gating, molecular and structural mechanisms of ASIC gating modulation by small molecules are poorly understood. Here, combining functional, crystallographic, computational and mutational approaches, we show that two structurally distinct small molecules potently and allosterically inhibit channel activation and desensitization by binding at the acidic pocket and stabilizing the closed state of rat/chicken ASIC1. Our work identifies a previously unidentified binding site, elucidates a molecular mechanism of small molecule modulation of ASIC gating, and demonstrates directly the structural basis of such modulation, providing mechanistic and structural insight into ASIC gating, modulation and therapeutic targeting.


Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cinética , Potenciais da Membrana , Moduladores de Transporte de Membrana/química , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Taquifilaxia
8.
Sci Transl Med ; 12(572)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268508

RESUMO

Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) has reached epidemic proportions with no pharmacological therapy approved. Lower circulating glycine is consistently reported in patients with NAFLD, but the causes for reduced glycine, its role as a causative factor, and its therapeutic potential remain unclear. We performed transcriptomics in livers from humans and mice with NAFLD and found suppression of glycine biosynthetic genes, primarily alanine-glyoxylate aminotransferase 1 (AGXT1). Genetic (Agxt1 -/- mice) and dietary approaches to limit glycine availability resulted in exacerbated diet-induced hyperlipidemia and steatohepatitis, with suppressed mitochondrial/peroxisomal fatty acid ß-oxidation (FAO) and enhanced inflammation as the underlying pathways. We explored glycine-based compounds with dual lipid/glucose-lowering properties as potential therapies for NAFLD and identified a tripeptide (Gly-Gly-L-Leu, DT-109) that improved body composition and lowered circulating glucose, lipids, transaminases, proinflammatory cytokines, and steatohepatitis in mice with established NASH induced by a high-fat, cholesterol, and fructose diet. We applied metagenomics, transcriptomics, and metabolomics to explore the underlying mechanisms. The bacterial genus Clostridium sensu stricto was markedly increased in mice with NASH and decreased after DT-109 treatment. DT-109 induced hepatic FAO pathways, lowered lipotoxicity, and stimulated de novo glutathione synthesis. In turn, inflammatory infiltration and hepatic fibrosis were attenuated via suppression of NF-κB target genes and TGFß/SMAD signaling. Unlike its effects on the gut microbiome, DT-109 stimulated FAO and glutathione synthesis independent of NASH. In conclusion, impaired glycine metabolism may play a causative role in NAFLD. Glycine-based treatment attenuates experimental NAFLD by stimulating hepatic FAO and glutathione synthesis, thus warranting clinical evaluation.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Ácidos Graxos , Glutationa , Glicina , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
9.
ACS Med Chem Lett ; 10(3): 261-266, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30891123

RESUMO

Herein, we disclose a series of selective GluN2B negative allosteric modulators containing a 1H-pyrrolo[3,2-b]pyridine core. Lead optimization efforts included increasing brain penetration as well as decreasing cytochrome P450 inhibition and hERG channel binding. The series was also optimized to reduce metabolic turnover in human and rat. Compounds 9, 25, 30, and 34 have good in vitro GluN2B potency and good predicted absorption, but moderate to high projected clearance. They were assessed in vivo to determine their target engagement. All four compounds achieved >75% receptor occupancy after an oral dose of 10 mg/kg in rat. Compound 9 receptor occupancy was measured in a dose-response experiment, and its ED50 was found to be 2.0 mg/kg.

10.
JCI Insight ; 3(14)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30046004

RESUMO

Soluble cytokine receptors function as decoy receptors to attenuate cytokine-mediated signaling and modulate downstream cellular responses. Dysregulated overproduction of soluble receptors can be pathological, such as soluble ST2 (sST2), a prognostic biomarker in cardiovascular diseases, ulcerative colitis, and graft-versus-host disease (GVHD). Although intervention using an ST2 antibody improves survival in murine GVHD models, sST2 is a challenging target for drug development because it binds to IL-33 via an extensive interaction interface. Here, we report the discovery of small-molecule ST2 inhibitors through a combination of high-throughput screening and computational analysis. After in vitro and in vivo toxicity assessment, 3 compounds were selected for evaluation in 2 experimental GVHD models. We show that the most effective compound, iST2-1, reduces plasma sST2 levels, alleviates disease symptoms, improves survival, and maintains graft-versus-leukemia activity. Our data suggest that iST2-1 warrants further optimization to develop treatment for inflammatory diseases mediated by sST2.


Assuntos
Descoberta de Drogas , Proteína 1 Semelhante a Receptor de Interleucina-1/efeitos dos fármacos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteômica , Receptores de Citocinas/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Biologia Computacional , Avaliação Pré-Clínica de Medicamentos , Doença Enxerto-Hospedeiro , Ensaios de Triagem em Larga Escala , Interleucina-33/metabolismo , Leucemia/tratamento farmacológico , Camundongos , Modelos Animais , Transplante de Células-Tronco
11.
Bioorg Med Chem Lett ; 26(19): 4781-4784, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27595421

RESUMO

The synthesis, SAR and preclinical characterization of a series of 6-chloro-N-(2-(4,4-difluoropiperidin-1-yl)-2-(2-(trifluoromethyl)pyrimidin-5-yl)ethyl)quinoline-5-carboxamide based P2X7 antagonists is described herein. The lead compounds are potent inhibitors in Ca(2+) flux and whole blood IL-1ß P2X7 release assays at both human and mouse isoforms. Compound 1e showed a robust reduction of IL-1ß release in a mouse ex vivo model with a 50mg/kg oral dose. Evaluation of compound 1e in the mouse SNI tactile allodynia, carrageenan-induced paw edema or CIA models resulted in no analgesic or anti-inflammatory effects.


Assuntos
Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinolinas/farmacologia , Animais , Descoberta de Drogas , Humanos , Interleucina-1beta/metabolismo , Camundongos , Antagonistas do Receptor Purinérgico P2X/química , Quinolinas/química , Relação Estrutura-Atividade
12.
J Med Chem ; 59(18): 8535-48, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27548392

RESUMO

The synthesis and SAR of a series of 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridine P2X7 antagonists are described. Addressing P2X7 affinity and liver microsomal stability issues encountered with this template afforded methyl substituted 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridines ultimately leading to the identification of 1 (JNJ 54166060). 1 is a potent P2X7 antagonist with an ED50 = 2.3 mg/kg in rats, high oral bioavailability and low-moderate clearance in preclinical species, acceptable safety margins in rats, and a predicted human dose of 120 mg of QD. Additionally, 1 possesses a unique CYP profile and was found to be a regioselective inhibitor of midazolam CYP3A metabolism.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Administração Oral , Animais , Cães , Halogenação , Haplorrinos , Humanos , Imidazóis/administração & dosagem , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/farmacologia , Camundongos , Modelos Moleculares , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Piridinas/administração & dosagem , Piridinas/farmacocinética , Ratos
13.
Bioorg Med Chem Lett ; 26(16): 3838-45, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27426304

RESUMO

The P2X7 receptor is an ATP-gated nonselective cation channel that has been linked to a number of inflammatory diseases. Activation of the P2X7 receptor by elevated levels of ATP results in the release of proinflammatory cytokines and elevated levels of these cytokines has been associated with a variety of disease states. A number of research groups in both industry and academia have explored the identification of P2X7R antagonists as therapeutic agents. Much of this early effort focused on the treatment of diseases related to peripheral inflammation and resulted in several clinical candidates, none of which were advanced to market. The emerging role of the P2X7 receptor in neuroinflammation and related diseases has resulted in a shift in medicinal chemistry efforts toward the development of centrally penetrant antagonists. This review will highlight the biology supporting the role of P2X7 in diseases related to neuroinflammation and review the recent medicinal chemistry efforts to identify centrally penetrant antagonists.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Receptores Purinérgicos P2X7/metabolismo , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Meia-Vida , Humanos , Inflamação/prevenção & controle , Ligação Proteica , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/química
14.
ACS Chem Neurosci ; 7(4): 490-7, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26752113

RESUMO

Novel 5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazine P2X7 antagonists were optimized to allow for good blood-brain barrier permeability and high P2X7 target engagement in the brain of rats. Compound 25 (huP2X7 IC50 = 9 nM; rat P2X7 IC50 = 42 nM) achieved 80% receptor occupancy for 6 h when dosed orally at 10 mg/kg in rats as measured by ex vivo radioligand binding autoradiography. Structure-activity relationships within this series are described, as well as in vitro ADME results. In vivo pharmacokinetic data for key compounds is also included.


Assuntos
Encéfalo/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Pirazinas/química , Pirazinas/farmacologia , Animais , Autorradiografia , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Ligação Proteica/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
15.
Neuropharmacology ; 105: 175-185, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26775823

RESUMO

BACKGROUND: The available pharmacotherapy for patients with epilepsy primarily address the symptoms and are ineffective in about 40% of patients. Brain inflammation gained support as potential target for developing new therapies, especially the P2X7 receptor (P2X7R), involved in processing of IL-1ß, might be an interesting candidate. This study was designed to investigate the effect of a novel P2X7R antagonist on the severity and on the number of chronic spontaneous recurrent seizures (SRS), which was unexplored until now. METHODS: After one-week of vehicle treatment (20% HP-ß-cyclodextrin), JNJ-42253432 was administered subcutaneously for another week under continuous video-electroencephalography monitoring (n = 17) in Sprague Dawley rats 3 months after kainic acid-induced status epilepticus. The proportion of different seizure classes, as well as the number of SRS/day were calculated for the vehicle and treatment period. In addition, post-mortem microglial activation and astrogliosis were assessed. RESULTS: A significant decrease of the proportion of type 4-5 SRS (p < 0.05), while an increase of type 1-3 was demonstrated (p < 0.05) from the vehicle to the treatment period. There was no effect of the P2X7R antagonist on the number of SRS/day or the glial markers. CONCLUSIONS: The P2X7R antagonist gave rise to a less severe profile of the chronic seizure burden without suppressing the SRS frequency. More studies are needed to unravel the underlying mechanisms of the beneficial effect on seizure severity and whether the administration of the compound during early epileptogenesis could induce long-term disease-modifying effects.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/prevenção & controle , Epilepsia do Lobo Temporal/fisiopatologia , Isoquinolinas/administração & dosagem , Isoquinolinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Receptores Purinérgicos P2X7/fisiologia , Convulsões/prevenção & controle , Convulsões/fisiopatologia , Animais , Modelos Animais de Doenças , Encefalite/complicações , Epilepsia do Lobo Temporal/complicações , Gliose/metabolismo , Interleucina-1beta/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Convulsões/complicações , Estado Epiléptico/complicações , Estado Epiléptico/fisiopatologia , Estado Epiléptico/prevenção & controle
16.
Bioorg Med Chem Lett ; 26(2): 257-261, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26707399

RESUMO

The synthesis, SAR, and preclinical characterization of a series of substituted 6,7-dihydro[1,2,4]triazolo[4,3]pyrazin-8(5H)-one P2X7 receptor antagonists are described. Optimized leads from this series comprise some of the most potent human P2X7R antagonists reported to date (IC50s<1nM). They also exhibit sufficient potency and oral bioavailability in rat to enable extensive in vivo profiling. Although many of the disclosed compounds are peripherally restricted, compound 11d is brain penetrant and upon oral administration demonstrated dose-dependent target engagement in rat hippocampus as determined by ex vivo receptor occupancy with radiotracer 5 (ED50=0.8mg/kg).


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Pirazinas/farmacologia , Triazóis/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Células CACO-2 , Fármacos do Sistema Nervoso Central/síntese química , Fármacos do Sistema Nervoso Central/farmacocinética , Hipocampo/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Pirazinas/síntese química , Pirazinas/farmacocinética , Ratos , Receptores Purinérgicos P2X7/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacocinética , Trítio
17.
J Hum Evol ; 85: 157-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26073075

RESUMO

Methodological developments and new paleoanthropological data remain jointly central to clarifying the timing and systemic interrelationships between the Middle-Upper Paleolithic (MP-UP) archaeological transition and the broadly contemporaneous anatomically modern human-archaic biological turnover. In the recently discovered cave site of Mughr el-Hamamah, Jordan, in situ flint artifacts comprise a diagnostic early Upper Paleolithic (EUP) assemblage. Unusually well-preserved charcoal from hearths and other anthropogenic features associated with the lithic material were subjected to acid-base-wet oxidation-stepped combustion (ABOx-SC) pretreatment. This article presents the ABOx-SC accelerator mass spectrometry (AMS) radiocarbon dates on nine charcoal specimens from a single palimpsest occupation layer. Date calibration was carried out using the INTCAL13 radiocarbon calibration dataset. With the bulk of the material dating to 45-39 ka cal BP (thousands of years calibrated before present), the Mughr el-Hamamah lithic artifacts reveal important differences from penecontemporaneous sites in the region, documenting greater technological variability than previously known for this time frame in the Levant. The radiocarbon data from this EUP archaeological context highlight remaining challenges for increasing chronological precision in documenting the MP-UP transition.


Assuntos
Carvão Vegetal/química , Fósseis , Datação Radiométrica/métodos , Carvão Vegetal/análise , Humanos , Substâncias Húmicas/análise , Jordânia , Espectrometria de Massas , Paleontologia
18.
Bioorg Med Chem Lett ; 25(16): 3157-63, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26099534

RESUMO

The optimization efforts that led to a novel series of methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones that are potent rat and human P2X7 antagonists are described. These efforts resulted in the discovery of compounds with good drug-like properties that are capable of high P2X7 receptor occupancy in rat following oral administration, including compounds 7n (P2X7 IC50 = 7.7 nM) and 7u (P2X7 IC50 =7 .7 nM). These compounds are expected to be useful tools for characterizing the effects of P2X7 antagonism in models of depression and epilepsy, and several of the compounds prepared are candidates for effective P2X7 PET tracers.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Pirazinas/química , Receptores Purinérgicos P2X7/química , Triazóis/química , Animais , Meia-Vida , Humanos , Microssomos/metabolismo , Ligação Proteica , Antagonistas do Receptor Purinérgico P2X/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacocinética , Ratos , Receptores Purinérgicos P2X7/metabolismo , Relação Estrutura-Atividade
19.
Prog Med Chem ; 53: 65-100, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24418608

RESUMO

The use of P2X7 antagonists to treat inflammatory disorders has garnered considerable interest in recent years. An increasing number of literature reports support the role of P2X7 in inflammatory pathways of the peripheral and central nervous systems (CNSs). A number of CNS indications such as neuropsychiatric and neurodegenerative disorders and neuropathic pain have been linked to a neuroinflammatory response, and clinical studies have shown that inflammatory biomarkers can be mitigated by modulating P2X7. Recent scientific and patent literature describing novel P2X7 antagonists has indicated their use in CNS disorders. In addition, several reports have disclosed the results of administering P2X7 antagonists in pre-clinical models of CNS disease or investigating brain uptake. This review describes small molecule P2X7 antagonists that have first appeared in the literature since 2009 and have potential therapeutic utility in the CNS, or for which new data have emerged implicating their use in CNS indications.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Doenças Neurodegenerativas/tratamento farmacológico
20.
ACS Med Chem Lett ; 4(4): 419-22, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24900687

RESUMO

The synthesis and preclinical characterization of two novel, brain penetrating P2X7 compounds will be described. Both compounds are shown to be high potency P2X7 antagonists in human, rat, and mouse cell lines and both were shown to have high brain concentrations and robust receptor occupancy in rat. Compound 7 is of particular interest as a probe compound for the preclinical assessment of P2X7 blockade in animal models of neuro-inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...